Umsetzung der Fachanforderungen Physik

im schulinternen Fachcurriculum

- Sekundarstufe II -

G9

Helene-Lange-Gymnasium Rendsburg

(gültig ab: 01.08.2025)

Inhaltsverzeichnis

1.	Vorwort	1
	Übersicht über die Unterrichtsthemen der Sekundarstufe II	
	Verwendete Lehrwerke und Hilfsmittel	
	Leistungsbewertung	
	Bewertungsbogen für Referate	
	Mediale Gestaltung des Unterrichts	
	Digitale Produkte	
	Unterrichtliche und außerunterrichtliche Lern- und Förderangebote	
	Internetquellen zum Physikunterricht	
	Stoffverteilungspläne	
	O 1	

1. Vorwort

In diesem schulinternen Fachcurriculum sind die Vereinbarungen der Fachkonferenz Physik zur Gestaltung des Physikunterrichts am Helene-Lange-Gymnasium in Rendsburg dokumentiert. Die Weiterentwicklung dieses schulinternen Fachcurriculums stellt gemäß der Fachanforderungen Physik für die Sek. I und II eine ständige gemeinsame Aufgabe der Fachkonferenz dar (vgl. Fachanforderungen Physik SH, MBWK, 2022, S. 35).

"Das schulinterne Fachcurriculum ist als Ergänzung zu den Fachanforderungen zu verstehen." (Leitfaden zu den Fachanforderungen Physik SH, MBWK, 2022, S. 64)

Dieses schulinterne Fachcurriculum beruht in seiner aktuellen Form auf einem Fachkonferenzbeschluss vom 10.06.2025.

2. Übersicht über die Unterrichtsthemen der Sekundarstufe II

Die Unterrichtsthemen ergeben sich aus den Fachanforderungen und dem Leitfaden der Fachanforderungen. Die Verteilung der Unterrichtsthemen auf die Jahrgänge ist der Tabelle zu entnehmen:

Jahrgang	Themen
E	Kinematik
	Dynamik
	Bewegung in radialsymmetrischen Systemen
	Mechanische Schwingungen
	Eigenschaften und Ausbreitung von Wellen
Q1	Überlagerung von Wellen
	Homogenes elektrisches Feld
	Bewegung in Magnetfeldern
	Veränderliche elektromagnetische Felder
	Elektromagnetische Schwingungen
Q2	Spektren
	Quantenobjekte I
	Atomvorstellungen I
	Quantenobjekte II
	Atomvorstellungen II

3. Verwendete Lehrwerke und Hilfsmittel

Folgende Lehrwerke werden an unserer Schule verwendet:

Jahrgänge	Lehrwerk
E-Q2	Metzler Physik, 4. Aufl., Schroedel, 2009

Folgende weitere Hilfsmittel werden verwendet:

- Wissenschaftlicher Taschenrechner
- IQB Mathematisch-naturwissenschaftliche Formelsammlung für die Abiturprüfung

Präsenzbestände der 3. Auflage des Metzlers sowie Formelsammlungen befinden sich im Vorbereitungsraum in der Physik-Sammlung und können bei Bedarf im Unterricht genutzt werden.

4. Leistungsbewertung

In der Sekundarstufe II wird die mündliche Mitarbeit bewertet. Außerdem werden Klausuren geschrieben. Zur mündlichen Leistung gehört:

- Unterrichtgespräch: zusammenfassen, erklären, beschreiben, nachfragen
- Arbeit mit Partnern oder in Gruppen, experimentieren, Aufgaben bearbeiten
- Anfertigen von Protokollen und Hausaufgaben
- Referate
- Tests

In der Sekundarstufe II werden Klausuren geschrieben. Bewertet werden zudem die Unterrichtsbeiträge, dazu zählt u. a.:

- Unterrichtsgespräch: zusammenfassen, erklären, beschreiben, nachfragen
- Arbeit mit Partnern oder in Gruppen, experimentieren, Aufgaben bearbeiten
- Anfertigen von Protokollen und Hausaufgaben
- Referate
- Tests

In den Oberstufenkursen auf grundlegendem Niveau werden ausschließlich zweistündige Klausuren geschrieben. Die Anzahl der Klausuren pro Halbjahr wird von der Oberstufenkoordination unter Berücksichtigung der insgesamt von den SuS zu schreibenden Klausuren festgelegt.

Im profilgebenden Fach Physik sind folgende Klausuren festgelegt (Angaben in Minuten):

E: 90/90/90Q1: 90/90/180Q2: 90/300/300

Ein alternativer Leistungsnachweis ist möglich, darf aber die Klausur von 180 Minuten nicht ersetzen.

Das physikalische Arbeiten in allen Klassenstufen soll auf korrektes Umgehen mit Einheiten und Formeln hinwirken. In Tests und insbesondere in Klausuren müssen rechnerische Lösungen folgenden Bedingungen genügen:

- 1. Angabe der Formel
- 2. Richtige Einsetzung der physikalischen Größen
- 3. Berücksichtigung der SI-Einheiten (Rechnen in SI-Einheiten (folgerichtig))
- 4. Ggf. Antwort mit Benennung der berechneten Größe bzw. Einordnung des Ergebnisses (Aufgaben, deren Lösungen ausschließlich die Aufsatzform verlangen, sind nicht geeignet!)

5. Bewertungsbogen für Referate

Zur Bewertung von Referaten dient beispielsweise der folgende oder ein ähnlicher Bogen. Dieser kann als Grundlage bzw. zur Orientierung dienen.

Inhalt/ Aufbau:

Kriterien	erfüllt	zum Teil erfüllt	nicht erfüllt
motivierender Einstieg			
inhaltlich fundiert,			
komplex, differenziert			
Schwieriges wird definiert			
und erläutert			
fachlich korrekt			
klarer Themenbezug			
deutlich gegliedert			
logisch aufgebaut			
Veranschaulichung,			
z. B. durch Beispiele			
Zusammenfassung am			
Ende			
auf Literatur gestützt;			
Quellenangaben			
Qualität des Plakats/ der			
Folie/ des Handouts			

Vortragsart:

Kriterien	erfüllt	zum Teil erfüllt	nicht erfüllt
klare, richtige Sprache			
verständliche Aussprache			
angemessene Lautstärke			
rhetorisches Geschick			
Blickkontakt			
Vermeiden von Füllwörtern			
u. ä.			
kontrollierte Mimik/ Gestik			
angemessenes Tempo			
Verständnishilfen (Tafel,			
Plakat, Karte, Folie o.ä.)			

6. Mediale Gestaltung des Unterrichts

- Einsatz schuleigener Laptops oder Tablets für Datenerfassung und Darstellung, Recherche und Präsentation
- Einsatz schülereigener Smartphones, zum Beispiel für Dokumentation von Versuchen, Zeitraffer oder Zeitlupe; Recherche
- Einsatz von Videos/Unterrichtsfilme (u. a. FWU-Mediathek) oder Simulationen (u.a. Leifi)
- Präsentation von Ergebnissen über Touchpanel per Screen-Share oder unter der Dokumentenkamera

7. Digitale Produkte

Im Fach Physik werden folgende digitalen Produkte verbindlich im jeweiligen Jahrgang erstellt:

Jahrgang	Themen
E	Digitale Messwerterfassung (mit phyphox, Viana oder Tracker)
Q1	Simulationen mit dem digitalen Endgerät (Messwertaufnahme Millikan-Versuch-Simulation Leifi)
Q2	Simulationen mit dem digitalen Endgerät (Doppelspalt-Simulator)

8. Unterrichtliche und außerunterrichtliche Lern- und Förderangebote

Folgende Angebote sind denkbar:

- Schülerlabore, z. B. Forschungswerkstatt in Kiel, X-Lab in Göttingen, Akademie der Wissenschaften in Hamburg
- Saturday Morning Physics Veranstaltungsreihe (5 Termine, ab Ende November, Universität Kiel, https://www.physik.uni-kiel.de/de/physik-schule/saturday-morning-physics)
- Batteriekraftwerk in Bordesholm
- Elektromuseum in Rendsburg
- DPG-Schülertagungen und DPG-Workshops, u. a. Göttingen
- MINT-Tag, Schleswig-Holstein
- Energievision2050
- MINT-Akademie im Netzwerk Schülerforschungszentren Schleswig-Holstein
- Rent-a-Scientist

9. Internetquellen zum Physikunterricht

Die nachfolgende Liste mit nützlichen Internet-Adressen mit Inhalten für den Physikunterricht wird durch die Fachschaft fortlaufend ergänzt.

Sekundarstufe II

- https://www.leifiphysik.de/
- https://www.fwu-mediathek.de/ (Filme, Arbeitsblätter Schullizenz vorhanden)
- http://www.cg-physics.org/ (Experimente, Erklärvideos, Slideshows, interaktive Simulationen zu verschiedenen Themen der Physik)
- https://www.youtube.com/user/Codu49/videos (YouTube-Kanal von cg-physics)
- https://www.youtube.com/channel/UCaQ7OqYw62bil4yXWEyC08g/videos (WebPhysik YouTube-Kabel mit Experimentiervideos, teilweise mit Erklärungen)
- http://mackspace.de/unterricht/simulationen-physik/index.html (Simulationen zu verschiedenen Experimenten)
- https://www.didaktik.physik.uni-muenchen.de/elektronenbahnen/index.php
 (Simulationen zu "Bewegung von Elektronen im E- und B-Feld)
- https://www.didaktik.physik.uni-muenchen.de/sims/lawine/ (Simulation zur Hangabtriebskraft an der schiefen Ebene)
- https://www.didaktik.physik.uni-muenchen.de/multimedia/index.html (weitere Programme und Applets von der Uni München)
- http://www.dieter-heidorn.de/ (Oberstufenphysik auf Basis des Metzlers zum Erarbeiten und Nachlesen)
- http://www.quantenphysik-schule.de/ (Quantenphysik nach Themen zum Erarbeiten)

10. Stoffverteilungspläne

Die im Folgenden angegebenen Seitenzahlen beziehen sich auf die in den Lehrwerken angegebenen Experimente, physikalischen Inhalte u. a. Es handelt sich dabei nicht zwingend um einen Pflichtlesestoff für Schülerinnen und Schüler.

Klassenstufe 11 (Einführungsphase)

Lehrbuch: Metzler Physik, 4. Aufl. (grün)

<u>Unterstrichen</u>: erhöhtes Anforderungsniveau *Kursiv: mögliche Ergänzung des Unterrichts*

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
11.1	Kinematik	Ort, Zeit, Durchschnitts- und Momentan- geschwindigkeit, Beschleunigung gleichförmige und gleichmäßig beschleunigte Bewegung	Schüler-, aber auch Demoexperimente $s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$	S. 12f., 17 S. 14f., 18f.
		freier Fall waagerechter Wurf	Aufgaben S. 24 – 26 Auswertung von Messreihen mit Tabellenkalkulation	S. 20f. S. 28
11.1	Dynamik	Masse, Kraft, Beschleunigung ($F=m\cdot a$) Trägheitsprinzip Reibungskraft Impuls Kräfte als Ursache von Impulsänderungen Impulserhaltung Energieerhaltung	Schüler- oder Demoexperiment Aufgaben S. 37 mögl. schiefe Ebene Experimente mit MEKRUPHY aber auch in Demonstration (quantitativ für elastische und unelastische Stöße) $E_{\rm kin}; E_{\rm pot}; E_{\rm S}; F \cdot \Delta {\it S} = \Delta E$	S. 44-46 S. 36f. S. 48-50 S. 38-41 S. 60-67 Aufgaben
11.2	Bewegung in Radialsymmetri- schen Feldern	Bahn- und Winkelgeschwindigkeit Zentripetalkraft Drehimpuls und Drehimpulserhaltung Gravitationsgesetz Gravitationsfeld (qualitativ: grundlegende Eigenschaften)	Kreisbewegung Auswertung mit Tabellenkalk. Keine umfassende Einheit zur Gravitation gefordert Satellitenbahn Vorträge Weltraumfahrt	S. 52f. S. 75 S. 86 S. 92f. S. 94-103
11.2	Mechanische Schwingungen	Größen: Schwingungsdauer, Frequenz, Elongation, Faden-, Federpendel Schwingungsgleichung Lineares Kraftgesetz Gedämpfte Schwingungen Resonanz bei erzwungenen Schwingungen Mechanische Schwingungen unter energetischen Gesichtspunkten	Projektionsexperiment harmonische Schwingung Überlagerung von Schwingungen, Gekoppelte Pendel	S. 108-112 S. 114f. S. 110f. S. 114f. S. 116f. S. 118f. S. 122f. S. 113

Klassenstufe 11 (Einführungsphase) (Forts.)

Lehrbuch: Metzler Physik, 4. Aufl. (grün)

<u>Unterstrichen</u>: erhöhtes Anforderungsniveau *Kursiv: mögliche Ergänzung des Unterrichts*

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
11.2	Eigenschaften und Ausbreitung von Wellen	Erzeugung und Ausbreitung von Wellen Größen: Amplitude, Wellenlänge, Frequenz, Ausbreitungsgeschwindigkeit Longitudinalwelle, Transversalwelle, Wellengleichung Polarisation	Pendelkette	S. 124-127 S. 126 S. 127, 320, 325
		Doppler-Effekt (qualitativ)	Hinweis auf Rotverschiebung bei Licht	S. 128f.

Klassenstufe 12 (1. Qualifikationsphase)

Lehrbuch: Metzler Physik, 4. Aufl. (grün) Unterstrichen: erhöhtes Anforderungsniveau

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
12.1	Überlagerung von Wellen	Interferenzphänomene (auch mit polychromatischem Licht)		S. 132-134
		Huygens'sches Prinzip, Beugung und Brechung		S. 135-138
		Superposition, Interferenz am Doppelspalt und am Gitter	Bestimmung der Wellenlänge der Lichtquelle	S. 302-305
		Interferenz am Einzelspalt mit monochromatischem Licht		S. 306-309
		Interferenz an dünnen Schichten	nur phänomenologisch auf grundlegendem Niveau	S. 314f.
		Zeitliche und räumliche Kohärenz	Benennung der Bedingungen für das Auftreten von Interf.	S. 316f.
		<u>Interferometer</u>	Aufbau und Funktionsweise d. Michelson-Interferometers	S. 316
		stehende Welle, Wellenlängen stehender Wellen		S. 140-143
12.1	Homogenes elektrisches Feld	Elektrische Ladung geladene Körper, Influenz Kräfte zwischen Ladungen	Elektrostatik-Experimente qual. Ladungsmessung Kraft auf Pendel im	S. 186-189
		Grundlegende Eigenschaften von elektrischen Feldern (u. a. Feldlinien)	Plattenkond.; Radialfeld, Dipolfeld, homogenes Feld	S. 196f.
		Superposition und Abschirmung elektrische Feldstärke Ladungen in homogenen elektr. Feldern	$E = \frac{F}{q} ; F = q \cdot E$	S. 187/197 S. 190
		Coulomb'sches Gesetz	Vergleich mit dem Gravitationsgesetz	S. 195
		Spannung, elektr. Feldstärke, potentielle Energie (Plattenkondensator bzw. homogenes Feld)	$E = \frac{U}{d}$ $W = q \cdot E \cdot s$	S. 192f.
		Potential, Spannung und potentielle Energie, Äquipotentiallinien	$U=\Delta arphi$ (Radialfeld, Dipolfeld, homogenes Feld)	S. 198-201
		Millikan-Versuch Beschleunigung und Ablenkung von	$v = \sqrt{2 \cdot \frac{e}{\cdot} \cdot U}$	S. 204f. S. 216f.
		Ladungen	\sqrt{m}	

Klassenstufe 12 (1. Qualifikationsphase) (Forts.)

Lehrbuch: Metzler Physik, 4. Aufl. (grün)<u>Unterstrichen</u>: erhöhtes Anforderungsniveau

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
12.1	Homogenes elektrisches Feld (Forts.)	Eigenschaften des Plattenkondensators: Kapazität gespeicherte Ladungsmenge gespeicherte Energie Dielektrikum	$C = \frac{Q}{U}$ $C = \varepsilon_0 \cdot \frac{A}{d}$ $W = \frac{1}{2} \cdot C \cdot U^2$	S. 220-223
		Auf- und Entladevorgang eines Kondensators	Zeitlicher Verlauf der Stromstärke <u>und Spannung,</u> <u>Einfluss von R und C</u>	S. 224-225
12.2	Bewegung in Magnetfeldern	Magnetische Flussdichte Magnetische Feldlinien, Superposition, Abschirmung Bewegte Ladungen im homogenen	Feldnachweis mit der Hall- sonde für eine lange Spule und die Helmholtz-Spule	S. 230-232 S. 234f.
		Magnetfeld (Lorentzkraft) <u>Halleffekt</u>		S. 236f.
		e/m-Bestimmung mit dem Fadenstrahlrohr Anwendung elektrischer und magnetischer Felder:		S. 238 S. 238-241
		Linear- und Kreisbeschleuniger, Massenspektrometer, Hallsonde		
12.2	Veränderliche elektromagne-	Magnetfeld einer langen Spule	Berechnungen	S. 246f.
	tische Felder	Induktionsgesetz (mit Differenzenquot.)	Spezialfälle konstante Fläche oder konstante magn. Flussdichte	S. 254-256
		Induktionsgesetz in diff. Form Induktivität einer Spule Energie des magn. Feldes einer Spule	Anwendung in diff. Form	S. 257 S. 260f. S. 262
		Selbstinduktion, Ein- und Ausschaltvorgänge		S. 261
		Wirbelströme Technische Anwendungen der Induktion		
12.2	Elektromagn. Schwingungen	Elektromagnetische Schwingungen (auch unter energetischen Gesichtspunkten), kapazitive, induktive und ohmsche Widerstände, Schwingkreise	Gedämpfte und Ungedämpfte elektrische Schwingungen Thomson'sche Gleichung	S. 286-288 S. 290f.
		Elektromagnetische Welle	Hertzscher Dipol Ausbreitung EM-Wellen	S. 292-295

Klassenstufe 13 (2. Qualifikationsphase)

Lehrbuch: Metzler Physik, 4. Aufl. (grün)<u>Unterstrichen</u>: erhöhtes Anforderungsniveau

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
13.1	Spektren	Farben elektromagnetisches Spektrum diskrete und kontinuierliche Spektren Emission- und Absorptionsspektren Bragg-Reflexion	Erklärung des Spektrums bei Interferenz mit weißem Licht Mikrowelleninterferenz Gitter und Prisma Spektren von Spektralröhren und LED's, Laser Aufbau und Funktionsweise einer Röntgenröhre	S. 296f. S. 330-333 S. 334f.
13.1	Quantenobjekte I	Photoeffekt Röntgenbremsspektrum Compton-Effekt	Umkehrung mit LED `s	S. 376 – 380 S. 381 S. 382f. S. 384f.
13.1	Atom- vorstellungen I	Quantenmechanisches Atommodell (qualitativ) Linienspektren Energieniveaus des Wasserstoffatoms und wasserstoffähnlicher Atome Emission und Absorption, Zusammenhang zwischen diskretem Spektrum und Energieniveauschema charakteristische Röntgenstrahlung	H, Hg; Ne; Na Balmerformel in $h \cdot f = E_2 - E_m$ H; He+; He	S. 409 S. 416f. S. 410 S. 406-409 S. 416f. S. 438
13.2	Quantenobjekte II	Doppelspalt-Experimente und Simulationen mit Licht, einzelnen Photonen und Elektronen Eigenschaften von Quantenobjekten (Photonen, Elektronen): Energie, Masse, Impuls, Frequenz, Wellenlänge De-Broglie-Wellenlänge Grundlegende Aspekte der Quantentheorie: stochastische Vorhersagbarkeit, Interferenz und Superposition, Determiniertheit der Zufallsverteilung, Komplementarität v. Weginformationen und Interferenzfähigkeit	bessere Aufbereitung im Metzler, 5. Aufl.	S. 386-389, S. 392f. S. 390f. S. 404f.

Klassenstufe 13 (2. Qualifikationsphase) (Forts.)

Lehrbuch: Metzler Physik, 4. Aufl. (grün)
<u>Unterstrichen</u>: erhöhtes Anforderungsniveau

Halbj.	Unterrichtseinheit	Verbindliche Inhalte	Arbeits- und Lehrhinweise	Lehrbuch (Metzler)
13.2	Quantenobjekte II (Forts.)	Quantenphysikalisches Weltbild hinsichtlich der Begriffe Realität, Lokalität, Kausalität, Determinismus		S. 404f.
		Koinzidenzmethode zum Nachweis einzelner Photonen	Beschreiben Nachweismögl. für einzelne Photonen oder Elektronen	S. 405
		Stochastische Deutung mittels $ \Psi(\vec{r},t) ^2$ (qualitativ)		S. 400
		<u>Delayed-Choice-Experiment</u>		
		Ort-Impuls-Unbestimmtheit	Vorbereitung durch akustische Unschärfe möglich	S. 396f. (S. 121)
13.2	Atom- vorstellungen II	<u>Linearer Potentialtopf</u>	Schrödinger-Gleichung nicht verbindlich, aber empfohlen	S. 420f.
		Orbitale des Wasserstoffatoms	Constant de la Demaistre	S. 432f.
		Ausblick auf Mehrelektronensysteme Aufbau des Periodensystems Pauli-Prinzip	Grundsätzlich im Bereich Atomphysik Absprache mit Fachschaft Chemie notwendig	S. 434f.

Mögliche Vertiefungsthemen oder Kontexte: Astronomie, Astrophysik, Relativitätstheorie, Kernphysik, Elementarteilchenphysik, Festkörperphysik, Thermodynamik, Klimaphysik, Biophysik, Ozean und Klima, Medizin und Sensorik, Elektromobilität