Umsetzung der Fachanforderungen Informatik

im schulinternen Fachcurriculum

- Sekundarstufe II -

G9

Helene-Lange-Gymnasium Rendsburg

(gültig ab: 01.08.2025)

Schulinternes Fachcurriculum Informatik SEK II

des Helene-Lange-Gymnasiums

Tola

1. Prolog

Grundlage dieses schulinternen Fachcurriculums (SiFC) sind die Fachanforderungen Informatik Sekundarstufe II vom 14.08.2020. Das SiFC adaptiert die Fachanforderungen an die Voraussetzungen des Helene-Lange-Gymnasiums, wobei Aspekte wie das Schulprofil, Lehrer- und Schülerschaft sowie die gegebene Infrastruktur (Soft- wie Hardware) berücksichtigt werden. Es dient insbesondere als Hilfestellung, wie die Kompetenzen der vier Inhaltsbezogenen Kompetenzbereiche Daten und Informationen, Informatiksysteme, Algorithmen und Programmierung, Netzwerke und Internet über die Jahrgangsstufen der Sekundarstufe I sowie die Kompetenzbereiche Betriebs- und Kommunikationssysteme, Algorithmen und Datenstrukturen, Datenbanken und Softwareentwicklung über die Jahrgangsstufen der Sekundarstufe II hinweg aufgebaut werden sollen.

Hierbei bildet das SiFC die Planungsgrundlage für den Fachunterricht durch

- Festlegung der Unterrichtsthemen (UT),
- deren Beitrag zum Erwerb der konkreten inhaltsbezogenen Kompetenzen (IBK) sowie
- den möglichen Einsatz geeigneter Hilfsmittel (HM).

Die Unterrichtsthemen werden durch die Angabe möglicher Unterrichtseinheiten (UE) konkretisiert.

Darüber hinaus enthält das SiFC konkrete Beschlüsse der Fachschaft über

- Festlegung von einheitlichen Bezeichnungen (=Fachsprache)
- Diagnostik, Differenzierung und Förderung,
- Leistungsmessung und Leistungsbewertung (in Ergänzung zu den allgemeinen Vorgaben der Schule)

Das SiFC berücksichtigt die Prinzipien des fächerübergreifenden Unterrichts wie auch der Themenorientierung. Weitere Ausführungen zur Gestaltung des schulinternen Fachcurriculums finden sich im Kapitel 6 der Fachanforderungen.

Das SiFC wird regelmäßig evaluiert und weiterentwickelt.

2. Aufbau

Zur Sekundarstufe II (E-, Q1- sowie Q2-Jahrgang) finden sich in Abschnitt 3 - 5 jeweils eine Tabelle, welche die Planungsgrundlage des Fachunterrichts für die jeweilige Jahrgangsstufe bildet. Die Tabelle gibt die Unterrichtsthemen (UT) vor, in deren Kontext die konkreten inhaltsbezogenen Kompetenzen (IBK) erworben werden sollen. Die Wahl der Unterrichtsthemen (UT) berücksichtigt neben einem Anwendungsbezug die Möglichkeit mehrere inhaltsbezogene Kompetenzbereiche zu umfassen, wodurch der Vernetzung der einzelnen Kompetenzbereiche untereinander gerecht geworden wird. Den einzelnen Unterrichtsthemen sind die konkreten inhaltsbezogenen Kompetenzen (IBK) entsprechend zugeordnet. Hieraus ergibt sich eine Verzahnung der unterschiedlichen Kompetenzbereiche in der Tabelle. Grau hinterlegte Inhalte sind vertiefende Inhalte für ein Profilfach.

An den Stellen, an denen es sich anbietet, werden in der Tabelle auf geeignete Hilfsmittel verwiesen.

Im Anschluss einer jeden Tabelle befindet sich eine Tabelle mit exemplarischen Unterrichtseinheiten (UE), welche die vorgegebenen Unterrichtsthemen (UT) konkretisieren. Da die Unterrichtseinheiten

SiFC Informatik (Stand: September 2025)

(UE) die Heterogenität des Lehrpersonals sowie der Lerngruppe widerspiegeln sollten, sind diese im Gegensatz zu den Unterrichtsthemen (UT) nicht verbindlich, sondern verstehen sich als mögliche Vorschläge. Aufgrund der genannten Heterogenität führt die konkrete Auswahl an Unterrichtseinheiten (UE) zwangsläufig zu einer Abdeckung unterschiedlicher Kompetenzen (in Art und Umfang) innerhalb der zugehörigen Unterrichtsthemen (UT), was – bezogen auf die abgedeckten Inhalte – die Überlappung der Unterrichtsthemen (UT) in den Tabellen erklärt.

Insbesondere im Hinblick auf Aktualität sollten diese exemplarischen Unterrichtseinheiten (UE) regelmäßig evaluiert und bei Bedarf weiterentwickelt bzw. ersetzt werden.

Am Ende des SiFC finden sich in Abschnitt 6 die Beschlüsse der Fachschaft zu den Aspekten Fachsprache, Differenzierung sowie Leistungsmessung und Leistungsbewertung.

3. E-Jahrgang

3.1. Planungsgrundlage für den Fachunterricht

	UT		IBK*	Inhalte		Hilfsmittel
echners			AD1, AD2, AD8, AD7, AD9	Grundlagen der Programmierung (Analysieren und Erzeugen)	 Algorithmusbegriff Pseudocode Elementare Anweisungen Sequenz Variablen Datentyp 	
Entmystifizierung des Rechners			BK1, BK2, BK3, BK4	Speicher	 Bits, Bytes, Binärsystem/Hexadezimal Ganzzahlen, Fließkommazahlen Metadaten in Bild- und Textdokumente Histogramme 	
Entmysti	nteraktion		ВК7	Schaltungen	SchaltwerkeGatterHalb-/Volladdierer	
	Mensch-Maschine-Interaktion	IT-Sicherheit	BK8, BK10, BK11, BK12	Ressourcenverwaltung	 Dateiverwaltung Dateisystem File-Allocation-Table Hierarchie Verknüpfungen Speicherverwaltung Zustände Speicherbelegung Rechte Benutzerverwaltung Rechteverwaltung Zugriffsrechte Benutzergruppen Berechtigungen 	
			ВК9	Authentifizierung	Benutzername-Passwort	

	AD7, AD9	Erweiterung der	Kontrollstrukturen
		Programmierung	 Bedingte Anweisungen
			 Wiederholungen
			 Variable als Akkumulator und
			Zählvariable
			• Felder
			 Variable als Index
			Iteration
	AD7, AD9	Modularisierung	Methoden/Unterprogramme
			 Parameter und Argumente
			 Rückgabewert
	BK4	Zusammenwirkung von	• Prozessoren
		Hardwarekomponenten	Ein- und Ausgabegeräte
			• Speicher
	BK5, BK6	Hardwarenahe-	Von-Neumann-Maschinen Modell
		Programmierung	Fetch-Zyklus
			• Assembler

^{*}Betriebs- und Kommunikationssysteme (BK)

3.2. Exemplarische Unterrichtseinheiten

Unterrichtsthema (UT)	Exemplarische Unterrichtseinheiten (UE)	Abgedeckte Inhalte
Entmystifizierung des Rechners	Sprachenhierarchien Ausgehend von dem zunehmenden Abstraktionsgrad bei der Erstellung eigener	Grundlagen der Programmierung (Anweisungen, Variablen,
	Programme (z. B. durch Auslagerung von Handlungsabfolgen in Methoden) wird die Frage entwickelt, wie eine einfache Rechenmaschine in der Lage ist, ein in einer Hochsprache verfasstes Programm auszuführen. Zur Beantwortung dieser Frage werden Hardwarekomponenten untersucht und auf ihre Bedeutung für die Ausführung von Programmen analysiert. So wird beispielsweise aus der Verwendung von Variablen die binäre Repräsentation von Daten im Speicher eines Rechners abgeleitet oder über die Ausführung einfacher Rechenoperationen mithilfe von Schaltnetzen ein Modell eines Prozessors mit einem abgeschlossenen Befehlssatz entwickelt. Am Ende dieser Untersuchung steht das Von-Neumann-Maschinen Modell und im Falle eines erhöhten	 Datentypen) Modularisierung Speicher (Bits, Bytes, Binärsystem) Schaltungen Zusammenwirken von Hardwarekomponenten (Prozessoren, Speicher)

^{*}Algorithmen und Datenstrukturen (AD)

	Anforderungsniveaus die Übersetzung einfacher hochsprachlicher Programme in eine maschinennahe Programmiersprache.	•	Hardwarenahe-Programmierung (Von-Neumann-Maschinenmodell, Assembler)
	Funktionsweise von Rechnern Aus der alltäglichen Verwendung von Informatiksystemen wird die Frage abgeleitet, wie der Computer eine Nutzereingabe (z. B. einen Tastendruck auf der Tastatur) verarbeitet und in eine Ausgabe (z. B. die Anzeige des entsprechenden Buchstabens in einem Texteditor) überführt. Über den Tastendruck auf einem Mikrocontroller wird die Situation simuliert und die Rolle des Betriebssystems als Schnittstelle zwischen Hardund Software entwickelt. Die Verwendung des Mikrocontrollers ermöglicht neben der Erweiterung des Begriffs Informatiksystem die Wiederholung der Grundlagen der Programmierung. Durch den Vergleich verschiedener Informatiksysteme können verschiedene Hardwarekomponenten und Peripheriegeräte untersucht werden.	•	Zusammenwirken von Hardwarekomponenten (Prozessoren, Speicher, Ein- / Ausgabegeräte) Programmierung (Grundlagen, Kontrollstrukturen)
Mensch-Maschine- Interaktion	Gaming Das Thema Gaming bietet die Möglichkeit viele Inhalte mit einem direkten Lebensweltbezug der Schülerinnen und Schüler zu verknüpfen und so zu motivieren. Es können zunächst einfache Spiele und deren zugrundeliegenden Algorithmen (re-) konstruiert und implementiert werden, um deren Heuristiken zu verstehen. Über das Speichern von Spielständen werden sowohl Speicher- als auch Authentifizierungsmethoden motiviert. Durch das Entwickeln eines eigenen Spiels werden elementare Anweisungen und Kontrollstrukturen in einem größeren Handlungsprojekt angewendet und vertieft. Abschließend untersuchen die SuS wie das eigene Spiel auf Hardwareebene umgesetzt wird und verstehen so das Zusammenspiel der einzelnen Hardwarekomponenten (Eingabegeräte => Prozessor => Speicher => Ausgabegeräte).	•	Grundlagen der Programmierung Speicher (Bits, Bytes, Binärsystem) Zusammenwirken von Hardwarekomponenten (Speicher) Ressourcenverwaltung Erweiterung der Programmierung Modularisierung
	Simulation Vorgänge in der Realität lassen sich aufgrund ihrer Komplexität oft unzureichend untersuchen. Mit einer Simulation wird ein Abbild genau dieser Vorgänge erzeugt, wodurch die Situation und die Untersuchung dieser beherrschbar wird. Diese Überführung bietet sich an vielerlei Stellen in der Lebenswelt der SuS an (z.B. Verkehrssituation vor dem Schulgebäude) und kann so vielseitig und differenzierend umgesetzt werden. Hierbei untersuchen die SuS wie eine solche Simulation auf Hardwareebene umgesetzt wird und verstehen so das Zusammenspiel der einzelnen Hardwarekomponenten (Eingabegeräte => Prozessor => Speicher => Ausgabegeräte).	•	Grundlagen der Programmierung Speicher (Bits, Bytes, Binärsystem) Zusammenwirken von Hardwarekomponenten (Speicher) Erweiterung der Programmierung Modularisierung

IT Cish out - 1	Ein erster Ausblick in die Fragestellung der Berechenbarkeit und deren Grenzen bietet sich an dieser Stelle an. Es bietet sich an unterschiedliche Simulationen zu implementieren und so die Grundlagen der Programmierung zu vertiefen.	
IT-Sicherheit	Zugriff über Sicherheitslücken Angriffe auf Informatiksysteme versuchen Sicherheitslücken für einen unbefugten Zugriff zu nutzen. Solche Angriffe können auf ungeschützte Speicherbereiche zielen, wie der Spectre-Angriff im Jahr 2018. Um einen solchen Angriff zu verstehen verlangt es ein Verständnis des Aufbaus eines Speichers (bis hin zu konkreten technischen Realisierungen wie Gattern) sowie der Repräsentation der Daten in dem Speicher. Neben den Gefahren sollten auch Schutzmechanismen gegen solch einen unbefugten Zugriff behandelt werden. Das Betriebssystem als Ressourcenverwalter schützt u.a. sensible Bereiche des Speichers und dient somit einer Prävention möglicher Angriffe. Es bietet sich an mittels einer modularisierten Programmierung mit entsprechenden Zugriffsrechten ein eigenen Handlungsprodukt zu erzeugen, welches ein nachhaltiges Verständnis für der Verkapselung sensibler generiert.	 Schaltungen Ressourcenverwaltung Erweiterung der Programmierung Modularisierung
	Kryptographie Da es nicht immer möglich ist Daten vor dem unbefugten Zugriff Dritter zu schützen, bedarf es kryptlogischer Verfahren. Werden Daten mittels einer geeigneten Verschlüsselung codiert, kann der unbefugte Zugriff auf diese vereitelt werden. Um die Arbeitsweise solcher Verschlüsselungen zu verstehen verlangt es ein Verständnis des Aufbaus eines Speichers sowie der Repräsentation der Daten in dem Speicher. Es bietet sich an mittels einer modularisierten Programmierung unterschiedliche Verschlüsselungen zu implementieren.	Modularisierung
	Brute-Force-Methode Eine Authentifizierung mittels Benutzer und Passwort schützt Daten vor Zugriff Dritter. Mindestanforderungen an Passwörter (wie Länge, Zeichenauswahl etc.) sichern hierbei einen gewissen Sicherheitsstandard. Brute-Force-Angriffe können Passwörter durch Ausprobieren einer Vielzahl an Kombinationen herausfinden. Es bietet sich an mittels einer modularisierten Programmierung einen Brute-Force-Angriff auf eine Passworteingabe zu implementieren, welches ein nachhaltiges Verständnis insbesondere für die Notwendigkeit ausreichend sicherer Passwörter erzeugt.	 Authentifizierung Erweiterung der Programmierung Modularisierung

4. Q1-Jahrgang

4.1. Planungsgrundlage für den Fachunterricht

UT	IBK*		Inhalte	Hilfsmittel
-	AD10, AD11, AD12, AD13, AD14	Strategisches Programmieren	 Güte des Ergebnisses Zufällig Vs. Deterministisch Divide And Conquer Rekursion ⇔ Iteration Greedy Nebenläufigkeit Verklemmung, Semaphoren 	
Effizientes Programmieren	AD3, AD4, AD5, AD6	Standardalgorithmen	 Sortieralgorithmen der Komplexitätsklasse O(n²) und O(n·log(n)) Selection-, Quick- und Merge-Sort Algorithmen auf Graphen: Dijkstra-Algorithmus Laufzeit O-Notation Laufzeit Vs. Komplexität 	
	DB1, DB2,	Tabellenstruktur	Repräsentation von Daten mithilfe von Tabellen	InstaHub
des Internets	DB5, DB6 , DB7, DB8 ,	Entwurf relationaler Datenbanken	 Datenbankschema => UML- Klassendiagramm Problemstellung => UML- Klassendiagramme => Datenbankschema Primärschlüssel Fremdschlüssel Referentielle Integrität Funktionale Abhängigkeiten 	
Entmystifizierung des Internets Sozial-Media	DB3	Abfragen auf relationalen Datenbanken	SQL Standardabfrage Joins subqueries	
Sozi	DB16, DB17	Daten als Wirtschaftsfaktor	ökonomische Verwertbarkeit von Daten	

		Filterblase	
BK13, BK14, BK17, BK18,	Netzwerke	 Netzwerkverbindungen Schichtenmodell Adressierung Paketvermittlung Protokolle der Anwendungsschich Protokolle Sequenzdiagramme Implementierung in einer Programmiersprache Wegefindung Adressen, Adressräume, Switch, Router Redundanz des Netzwerkes Flexibilität des Routings Ausfallsicherheit Lastverteilung Priorisierung von Daten 	Filius
BK15, BK16, BK19, BK20	Internet	 Verbund von Netzwerken URL, DNS, HTTP(S), IMAP/SMTP, SSH Sicherheitsziele Risiken Abwehrmaßnahmen Webanwendungen Peer-to-Peer, Client-Server Gesellschaftliche Folgen netzbasierter Kommunikation 	
AD15, AD16	Maschinelles Lernen	 Einfache neuronale Netze Forward Propagation Multi-Layer-Perzeptron überwachtes Lernen unüberwachtes Lernen Verstärkungslernen 	machinelearningforkids.co.uk

- *Betriebs- und Kommunikationssysteme (BK)
- *Algorithmen und Datenstrukturen (AD)
- *Datenbanken (DB)

4.2. Exemplarische Unterrichtseinheiten

Unterrichtsthema (UT)	Exemplarische Unterrichtseinheiten (UE)	Abgedeckte Inhalte
Entmystifizierung des Internets	Informationelle Selbstbestimmung Die Spuren, welche wir im Internet hinterlassen, sind überall. Wer welche Daten speichert und wozu diese genutzt werden können, kann in der heutigen Zeit kaum noch überblickt werden. Die Anwendungsmöglichkeiten dieser Daten sind zahlreich und nicht alle sind für den Endverbraucher schlecht. Wo werden meine Daten gespeichert und von wem? Der Aufbau und die Funktionsweise des Internets sowie unterschiedliche Anwendungen können anhand dieser Frage aufgebaut werden. Das Ziel ist es den SchülerInnen eine Grundlage zu vermitteln, mit der sie selbst bewerten können, welche Gründe und welche Folgen es haben kann, wenn eigene Daten im Netz gespeichert werden.	 Datenbanken Netzwerke Internet Maschinelles Lernen Daten als Wirtschaftsfaktor
	Funktionsweise des Internets Die Funktionsweise des Internets bietet sich als Übergreifendes Thema des gesamten Schuljahres an. Denn alle anderen Unterrichtsthemen -mit Ausnahme der Programmierstrukturen- lassen hiermit zusammenfassen. Das Internet ist ein großer Teil des Alltags der SchülerInnen, weswegen das Internet und deren Funktionsweise ein essenzielles Thema sein muss. Über den Aufbau von Webseiten, den Umgang mit sozialen Netzwerken, der Strukturen von großen Datensätzen bis hin zur Sicherheit innerhalb dieser Strukturen, bietet dieses Thema viele Verknüpfungsmöglichkeiten.	 Datenbanken Netzwerke Internet Maschinelles Lernen Daten als Wirtschaftsfaktor
Sozial-Media	Soziale Medien Anhand eines beispielhaften Sozialen Netzwerkes können zahlreiche Unterrichtinhalten an einem Themenkomplex behandelt werden. Der Aufbau eines allgemeinen Netzwerkes, welches nicht nur im Internet, sondern auch im Straßenverkehr oder in sozialen Strukturen wieder zu finden ist, kann hier einen Einstieg bilden, welcher dann den Aufbau und die Funktionsweise des Internets thematisiert. Mithilfe des didaktischen sozialen Netzwerks "Instahub" werden dann Datenbanken, SQL und der Internetsicherheit behandelt.	 Datenbanken Netzwerke Internet Maschinelles Lernen Daten als Wirtschaftsfaktor
	Streaming Dienste, Kommunikationsmedien etc.	Datenbanken

	Streaming Dienste bieten -ähnlich wie soziale Netzwerke- Strukturen, welche gut an die Unterrichtsinhalte anknüpfen. Besonders hervorzuheben sind hier die Möglichkeiten, des Verbindungsaufbaus zwischen Server und Clint. Somit kann hier beispielhaft das Schichtenmodell und die Funktionsweise von Paketen betrachtet werden. Außerdem bieten Algorithmen, welche Werbung, Songs oder Serien vorschlagen zahlreiche Einblicke die Funktionsweise von Maschine Learning und dem Nutzen von Userdaten.	•	Netzwerke Internet Maschinelles Lernen Daten als Wirtschaftsfaktor
Effizientes Programmieren	Programmierung effizient gestalten Nachdem eine Basis im Programmieren geschaffen wurde, setzt sich diese Unterrichtseinheit mit der Optimierung auseinander. Indem man unterschiedliche Lösungswege und Strategien betrachtet, können Algorithmen nach Laufzeit bzw. Komplexität bewertet werden. In diesem Zusammenhang werden unterschiedliche Algorithmen und Programmiertechniken behandelt und umgesetzt.	•	Strategisches Programmieren Standardalgorithmen

5. Q2-Jahrgang

5.1. Planungsgrundlage für den Fachunterricht

	UT		IBK*			Inhalte	Hilfsmittel
		Projektmanagement	AD17	Objektorientiertes Programmieren	•	Umsetzung in Programmen Klassen und Objekte Attribute und Methoden Referenzen Beziehungen Kapselung	
	ø	Projektm	AD18, AD19, AD20	Komplexe Datenstrukturen	•	Listen und Bäume Einfügen, Löschen, SuchenFiltern (nur Listen)Ausbalancieren (nur Bäume)Effizienzbetrachtungen	
	Big Data		DB4	Manipulation von Datenbanken	•	insert, update, delete	
	B		DB9, DB10 , DB11	Erstellen eigener Datenbanken	•	Redundanzen o Anomalien create views	
Mensch-Maschine-Interaktion			DB12 , DB13 , DB 14, DB15	Große Datenmengen	•	Grenzen relationaler Datenbanken Alternative Organisationsformen großer Datenmenge	
Mensch-Ma			SE1, SE2, SE3, SE4, SE6	Projektplanung	•	Anforderungsanalyse o Pflichtenheft o Mock-Ups o User stories	

			Vorgehensmodelle
			 Wasserfallmodell
			o Spiralmodell
			o agile Methoden
			Zeit und Arbeitspläne
			 Gruppenbildung
			 Zuständigkeiten
			 Meilensteine
			Versionsverwaltungssystem
			 Änderungshistorie
			 Kollaboratives Arbeiten
_	SE7, SE8, SE9 ,	Projektdurchführung	Modellierung
tio	SE10, SE11		 Abhängigkeiten
rak	int		 Nebenläufigkeit
nte	Projektmanagement		UML-Diagramme
-je	age		 Anwendungsfalldiagramm
ı. İ	nau		 Klassendiagramm
asc	tt		 Sequenzdiagramm
Σ) jek		Zustandsdiagramm
Mensch-Maschine-Interaktion	Pr		Strukturmuster
Jen			 Model-View-Control
2			o <mark>Observer</mark>
			 Client-Server Architektur
			Implementierung
			 Modularisierung und Schnittstellen
			o Bibliotheken
			Testen
			 Codeabdeckung
			o Grenzfälle
			 Unit- und Integrationstests
	SE5	Projektpräsentation	Dokumentation
	SE12, SE13	Grenzen komplexer	Versionskontrolle
		Softwaresysteme	Dokumentation

		•	Nutzerschulung	
		•	(Un-)Entscheidbarkeit	L

^{*}Algorithmen und Datenstrukturen (AD)

5.2. Exemplarische Unterrichtseinheiten

Unterrichtsthema (UT)	Exemplarische Unterrichtseinheiten (UE)	Abgedeckte Inhalte
Mensch-Maschine- Interaktion	Gaming, Simulationen oder allgemein Software-Entwicklung Diese Themen besitzen das Potential alle Inhalte des Jahres entlang eines roten Fadens zu strukturieren. Der Unterricht kann dahingehend geplant werden, dass am Ende von den SchülerInnen ein großes Projekt selbst entwickelt wird. Die Objektorientierung und das Erstellen eigener Datenbanksysteme bilden dabei die fachliche Grundlage, mit welcher am Ende das Projekt entwickelt werden soll. Die SchülerInnen können während dieser Unterrichtseinheiten schon Ideen und Skizzen für das eigene Projekt sammeln, sodass im letzten Schritt diese als Ausgangspunkt dienen. Auch die Grundlagen des Projektmanagement können durch diese Projekte anschaulich erlernt werden. Zum Schluss wird von den SchülerInnen in größeren Gruppen ein eigenes Spiel, eine Simulation oder ein ganz anderes Programm entwickelt. Dabei ist es wichtig am Anfang eine Struktur aufzubauen, sodass Aufgaben verteilt werden können und das Programm geplant entwickelt wird. Die Strukturierungsmöglichkeiten von Datenbanken und der Objektorientierung sind dabei Hilfen für die SchülerInnen.	 Objektorientierung Komplexe Datentypen Internet Erstellen von Datenbanken Projektplanung Projektdurchführung
Big Data	Statistische Erhebungen Das Erfassen und das Auswerten von großen Datenmengen ist ein zentraler Punkt in der aktuellen Software-Entwicklung. Zahlreiche Anwendungen erfassen Daten und werte diese zielgerichtet aus, um daraus Schlussfolgerungen zu ziehen, wie etwas optimiert werden kann. Auch für KI-Systeme ist die Datenverarbeitung von zentraler Bedeutung. In der Schule könnte man mit Umfragen im Jahrgang, bei den Lehrerkräften oder der ganzen Schule, Daten erfassen und aus diesen Schlussfolgerungen ziehen. Dazu müssten diese zunächst in eine selbst erstellte Datenbank eingepflegt werden.	 Objektorientierung Komplexe Datentypen Manipulation von Datenbanken Erstellen eigener Datenbanken Große Datenmengen
Projektmanagement	App-Programmierung	

^{*}Datenbanken (DB)

^{*}Softwareentwicklung (SE)

6. Weiter Beschlüsse der Fachschaft

6.1. Fachsprache

Die Beherrschung einer angemessenen Fachsprache ist ein wesentliches Merkmal informatischer Kompetenz. Dies schließt sowohl das Verstehen von Darstellungen informatischer Sachverhalte ein, als auch die Fähigkeit diese angemessen auszudrücken. Die fachliche Kommunikation schließt hierbei auch die verschiedenen Darstellungsformen, das heißt neben der gesprochenen Sprache auch Diagramme, Quelltexte oder formale Darstellungsformen.

Der Informatikunterricht unterstützt die Schülerinnen und Schüler dabei, die Fachsprache zu erlernen. Er baut dabei auf den vorhandenen Sprachfähigkeiten auf: Zunächst dürfen die Schülerinnen und Schüler sich auch in ihrer Alltagssprache ausdrücken, um einen Zugang zu informatischen Fragestellungen zu erhalten. Im weiteren Verlauf des Unterrichts wird den Schülerinnen und Schülern immer wieder Raum gegeben, fachsprachlich zu kommunizieren.

Aus dem typischen iterativen Vorgehen informatischer Entwicklungsprozesse (Erkennen und Beschreiben formalisierbarer Probleme => Verwenden und Entwickeln von Modellen => Erschaffen informatischer Produkte => Prüfen und Überarbeiten informatischer Produkte), entsteht die Notwendigkeit der prozessbezogenen Kompetenz "Kommunizieren über informatische Themen" und somit einer Verwendung der Fachsprache.

Es soll entsprechend im Fach Informatik in jeder Unterrichtseinheit ein informatisches Produkt entwickelt werden und somit der Entwicklungsprozess durchlaufen werden. Hierbei soll verstärkt auf den Einsatz geeigneter Fachsprache geachtet werden.

Grundlage der Fachsprache ist die in Anlage 1 angehängte Operatorenliste.

Darüber hinaus können bei Bedarf innerhalb der Fachschaft weitere Absprachen bzw. Konkretisierungen getroffen werden und in folgender Tabelle dokumentiert werden.

Operator/Begriff	Definition/Konkretisierung	Beispiele

6.2. Differenzierung

Wie kaum ein zweites Fach ist auf Grund völlig unterschiedlicher Vorerfahrungen die Leistungsspanne im Fach Informatik sehr breit. Es bedarf entsprechend einer persistenten Differenzierung. Aufgrund dieser großen Leistungsspanne sollte die Differenzierung aber nicht zu einer weiteren Diskrepanz innerhalb der Lerngruppe im Lehrstoff führen. Die gewählte Form der Differenzierung leistungsstärkerer SchülerInnen sollte also nicht in der Vertiefung des Lehrstoffes liegen, sondern vielmehr in der Unterstützung leistungsschwächerer SchülerInnen, in der Förderung sozialer Kompetenzen oder in der Erarbeitung in Themengebiete, die nicht in den Fachanforderungen zu finden sind.

Möglichkeiten einer geeigneter Differenzierung finden sich in folgender Tabelle:

Name	Beschreibung
Externer Berater	Durch das stete erzeugen informatischer Produkte verlang das Fach
	Informatik einen hohen Grad an Abstraktion und Modellierung. In
	diesen Phasen können leistungsstarke SchülerInnen als externe Berater
	hinzugezogen werden und insbesondere in der Modellierungsphase
	leistungsschwächere SchülerInnen bzw. Kleingruppen unterstützen.

	Eine weitere Form kann sein, dass einzelne SchülerInnen sich auch selbstständig bei Bedarf vorher benannte externe Berater hinzuziehen dürfen.
Extreme Programming	In Implementierungsphasen können leistungsstarke SchülerInnen einzelnen SchülerInnen bzw. Kleingruppenzugeordnet werden, um mit diesen Extreme-Programming durchzuführen, d.h. während die SchülerInnen bzw. Kleingruppen implementieren, überwacht der/die leistungsstarke SchülerIn den Implementierungsfortschritt und greift bei Bedarf korrigierend ein.
Outsourcen	Im Entwicklungsprozess informatischer Produkte ist es in der freien Wirtschaft üblich, bestimmte Aufgaben an Drittfirmen auszulagern. Das Prinzip des Outsourcens lässt sich auf den Unterricht übertragen: So kann das Entwickeln zusätzlicher Funktionalitäten (d.h. über den seitens der Lehrkraft geforderten Umfang hinausgehend) des informatischen Produkts an die leistungsstärkeren SchülerInnen ausgelagert werden
Dokumentation	Damit die Funktionsweise eines informatischen Produkts auch im Nachhinein verstanden werden kann, bedarf es geeigneter Dokumentationen. Das Entwickeln einer geeigneten Dokumentation für ein bereits vorhandenes informatisches Produkt kann leistungsschwächeren SchülerInnen helfen, die Funktionsweise dieses Produkts zu verstehen, ohne selbst jeden Entwicklungsschritt durchzuführen.
Betaphase	Ein wichtiger Teil im Entwicklungsprozess informatischer Produkte liegt in der Testphase dieser Produkte. Aufgrund der Komplexität und der Tatsache, dass die Testphase erst am Ende eines jeden (erfolgreichen) Entwicklungszyklus liegt, wird auf das Testen in den Fachanforderungen kein Schwerpunkt gesetzt. Besonders leistungsstarke SchülerInnen können entsprechend zur Entwicklung geeigneter Testumgebungen für die informatischen Produkte der anderen Gruppen eingesetzte werden.

Jede Differenzierungsform bedarf sowohl auf Seiten der Lehrkräfte als auch auf Seiten der SchülerInnen einer gewissen Übung und sollte deshalb nie isoliert, sondern wiederholt im Unterricht eingesetzt werden.

6.3. Leistungsmessung und Leistungsbewertung

Jahrgangsstufe	Leistungsmessung	Leistungsbewertung	m/s
E-, Q1- & Q2-	mündlichen Beiträge in	Fachsprache, inhaltliche	m
Jahrgang	Unterrichtsgesprächen, in	Korrektheit, abgedeckter	
	Gruppenarbeiten, in Projektarbeiten	Anforderungsbereich	
	etc.		
	Implementierungsphasen am PC (d.h.	Fachsprache, inhaltliche	m
	das Lösen vorgegebener	Korrektheit, abgedeckter	
	Problemstellungen mit Hilfe geeigneter	Anforderungsbereich,	
	digitaler Hilfsmittel)	Umfang, Aspekte der Effizienz,	
		bei Gruppenarbeiten: soziale	
		Aspekte	
	optionale Tests	siehe Klassenarbeitserlass	m
	Je Schuljahr zwei Klausuren (im Q2-	siehe Klassenarbeitserlass	S
	Jahrgang wird lediglich eine Klausur		

SiFC Informatik (Stand: September 2025)

sowie im Profilfach zusätzlich die	
Abiturprüfung geschrieben)	

In der Gesamtleistungsbewertung sollen die mündlichen Leistungen überwiegen.

Anlage 1 – Operatorenliste

Operator	Definition	Beispiele
abschätzen	durch begründete Überlegungen Größenordnungen angeben	Schätzen Sie das Zeitverhalten des Verfahrens ab, wenn sich die Anzahl der zu bearbeitenden Daten verdoppelt.
analysieren / untersuchen	unter einer gegebenen Fragestellung wichtige Bestandteile oder Eigenschaften nach fachlich üblichen Kriterien herausarbeiten	Analysieren Sie die Funktionsweise des Algorithmus. Untersuchen Sie den Algorithmus der folgenden Beispiele.
anwenden	einen bekannten Zusammenhang oder eine bekannte Methode auf einen (anderen) Sachverhalt beziehen	Wenden Sie einen Greedy- Algorithmus zur Lösung des Problems an.
auswerten	Daten, Einzelergebnisse oder sonstige Sachverhalte zu einer abschließenden, begründeten Gesamtaussage zusammenführen	Werten Sie die Tabelle hinsichtlich der Fragestellung aus.
begründen	einen Sachverhalt auf Gesetzmäßigkeiten bzw. kausale Zusammenhänge zurückführen	Begründen Sie die folgenden Aussagen.
berechnen	Ergebnisse durch Rechenoperationen gewinnen	Berechnen Sie die Größe.
beschreiben	Sachverhalte oder Verfahren in Textform unter Verwendung der Fachsprache in vollständigen Sätzen in eigenen Worten wiedergeben	Beschreiben Sie das RSA- Verfahren. Beschreiben Sie die Syntax.
bestimmen	Eine rechnerische, graphische oder inhaltliche Lösung generieren	Bestimmen Sie die Anzahl der rekursiven Aufrufe.
beurteilen	zu einem Sachverhalt ein selbstständiges Urteil unter Verwendung von Fachwissen und Fachmethoden formulieren und begründen	Beurteilen Sie symmetrische und asymmetrische Verschlüsselung hinsichtlich Beurteilen Sie die These.
bewerten	Sachverhalte, Methoden, Ergebnisse etc. an Kriterien messen	Bewerten Sie den Einsatz von smarten Sprachassistenten im privaten Bereich.
darstellen	Sachverhalte, Zusammenhänge etc. strukturiert wiedergeben	Stellen Sie Ihr Ergebnis in einer Tabelle dar.

diskutieren /	Argumente zu einer Aussage oder	Diskutieren Sie beide Sachverhalte
erörtern	These einander gegenüberstellen und abwägen	aus rechtlicher Sicht. Erörtern Sie Vor- und Nachteile aus der Sicht des Benutzers.
entscheiden / (aus-)wählen	sich bei Alternativen begründet auf eine Möglichkeit festlegen	Entscheiden Sie sich für ein Modell. Wählen Sie ein geeignetes Werkzeug.
entwerfen / entwickeln	Nach vorgegebenen Bedingungen ein sinnvolles Konzept selbständig planen bzw. erarbeiten	Entwerfen Sie eine Datenstruktur. Entwickeln Sie einen Algorithmus.
ergänzen	eine vorgegebene Problemlösung erweitern	Ergänzen Sie das ER-Modell so, dass
erklären	einen Sachverhalt durch zusätzliche Informationen veranschaulichen und verständlich machen	Erklären Sie die Funktionsweise von Backtracking.
erläutern	einen Sachverhalt nachvollziehbar und verständlich machen	Erläutern Sie den Nutzen der Methode / Prozedur
erstellen / konstruieren	herstellen bzw. gestalten eines Systems unter vorgegebener Zielsetzung	Erstellen Sie ein Klassendiagramm. Konstruieren Sie einen endlichen Automaten.
formulieren / schreiben	einen Sachverhalt / eine Problemlösung in einer fachspezifischen Form darstellen	Formulieren Sie eine SQL-Abfrage. Schreiben Sie eine Prozedur.
implementieren	codieren einer Datenstruktur oder eines Algorithmus in einer Programmiersprache	Implementieren Sie den Suchalgorithmus.
interpretieren	Sachverhalte, Zusammenhänge, Fakten oder Daten analysieren und deuten/erklären	Interpretieren Sie das Histogramm.
klassifizieren / ordnen	Elemente Klassen zuweisen, in eine Struktur bringen, in eine Reihenfolge bringen	Klassifizieren Sie die Algorithmen entsprechend ihrer Komplexität.
kommentieren	einen gegebenen Sachverhalt oder einen gegebenen Algorithmus mit erläuternden Hinweisen versehen	Kommentieren Sie den Programmcode zeilenweise.
konfigurieren / verfeinern	eine vorhandene Struktur präzisieren / ergänzen / erweitern	Konfigurieren Sie das Programm für Ihre Anforderungen. Verfeinern Sie den Grobentwurf.
modellieren	Zu einem Ausschnitt der Realität ein informatisches Modell entwerfen	Modellieren Sie das vorgestellte Problem mit Hilfe einer Datenbank.

nennen /	ohne nähere Erläuterungen und	Nennen Sie drei weitere Beispiele.
angeben	Begründungen aufzählen	Geben Sie den Typ der Grammatik
angeben	Begrundungen aufzahlen	an.
präsentieren	vorstellen oder veröffentlichen	Präsentieren Sie Ihren Entwurf.
	eines Produkts unter	
	informationstechnischen	
	Gesichtspunkten	
protokollieren	Beobachtungen detailgenau und	Protokollieren Sie den
	fachsprachlich richtig wiedergeben	Programmablauf mit Hilfe einer
		Trace-Tabelle.
testen	systematisch ein gegebenes oder	Testen Sie das Programm für
	selbst erstelltes System auf Fehler	unterschiedliche Ausgangswerte.
	untersuchen	
überführen	eine Darstellungsform in eine	Überführen Sie den Pseudocode in
	andere Darstellungsform bringen	eine Programmiersprache.
(über-)prüfen	Sachverhalte an Fakten oder	Überprüfen Sie die Funktionsweise
(innerer Logik messen und	des Algorithmus.
	eventuelle Widersprüche oder	3
	Lücken aufdecken	
		V . f . l . c: . l:
vereinfachen /	die Komplexität eines Sachverhalts	Vereinfachen Sie diesen
reduzieren	nach bekannten Regeln verringern	Boole'schen Term. Reduzieren Sie
		den endlichen Automaten.
verfeinern	eine vorhandene Struktur	Verfeinern Sie den Grobentwurf /
	präzisieren / ergänzen / erweitern	das Modell.
vergleichen	nach vorgegebenen oder selbst	Vergleichen Sie symmetrische und
	gewählten Gesichtspunkten	asymmetrische Verschlüsselung.
	Gemeinsamkeiten, Ähnlichkeiten	
	und Unterschiede ermitteln und	
	darstellen	
vervollständigen	einer gegebenen Teillösung	Vervollständigen Sie das
	fehlende Teile hinzufügen	Syntaxdiagramm.
verwenden	Regeln, Anweisungen oder	Verwenden Sie Ihr Smartphone für
	Hilfsmittel zur Lösung eines	die Durchführung der Aufgabe.
	Problems nutzen	
zeichnen /	die wesentlichen Eigenschaften	Zeichnen Sie den Anfang eines
graphisch	eines Objektes möglichst	Suchbaums. Skizzieren Sie den
darstellen /	übersichtlich in einer Zeichnung	Graphen.
skizzieren	darstellen	
zeigen	eine Aussage, einen Sachverhalt	Zeigen Sie, dass der Algorithmus
-	durch Berechnungen, Herleitungen	terminiert.

SiFC Informatik (Stand: September 2025)

tigen	
Vesentliche kurz und sichtlich darstellen	Fassen Sie gleichartige Objekte zusammen.
١	/esentliche kurz und